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On the Connectivity of Sensor Networks Under
Random Pairwise Key Predistribution

Osman Yağan, Member, IEEE, and Armand M. Makowski, Fellow, IEEE

Abstract—We investigate the connectivity of wireless sensor net-
works under the random pairwise key predistribution scheme of
Chan et al. Under the assumption of full visibility, this reduces
to studying the connectivity in the so-called random -out graph

; here, is the number of nodes and is an integer
parameter affecting the number of keys stored at each node. We
show that if (respectively, ), the probability that

is a connected graph approaches 1 (respectively, 0) as
goes to infinity. For the one-law this is done by establishing an ex-
plicitly computable lower bound on the probability of connectivity.
Using this bound, we see that with high probability, network con-
nectivity can already be guaranteed (with ) by a relatively
small number of sensors. This corrects earlier predictions made on
the basis of a heuristic transfer of connectivity results available for
Erdős–Rényi graphs.

Index Terms—Connectivity, random graphs, zero-one laws.

I. INTRODUCTION

R ANDOM key predistribution is an approach proposed
in the literature for addressing security challenges in re-

source-constrained wireless sensor networks (WSNs). The idea
of randomly assigning secure keys to the sensor nodes prior
to network deployment was first introduced by Eschenauer and
Gligor [5]. Following their original work, a large number of key
predistribution schemes have been proposed; see the survey ar-
ticles [2], [16], [17].
Here, we consider the random pairwise key predistribution

scheme proposed by Chan et al. in [3]: Before deployment, each
of the sensor nodes is paired (offline) with distinct nodes
which are randomly selected from among all other nodes. For
each such pair of sensors, a unique (pairwise) key is generated
and stored in the memory modules of each of the paired sensors
together with both their ids. A secure link can then be estab-
lished between two communicating nodes if they have at least
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one pairwise key in common. Precise implementation details
are given in Section II. The random pairwise predistribution
scheme has a number of advantages over the original scheme
of Eschenauer and Gligor: 1) It is perfectly resilient against
node capture attacks [3]; 2) unlike earlier schemes, this pair-
wise scheme enables both distributed node-to-node authentica-
tion and quorum-based node revocation.
Let denote the random graph on the vertex set

where distinct nodes and are adjacent if they
have at least one pairwise key in common. This random graph
models the random pairwise key predistribution scheme under
full visibility (whereby all nodes are within wireless communi-
cation range of each other). In this paper, we seek conditions
on and under which is a connected graph with
high probability as grows large. As in the case of the Es-
chenauer–Gligor scheme [19], such conditions might provide
helpful guidelines for dimensioning purposes (although pos-
sibly too optimistic given the full visibility assumption used).
We show the following zero-one law: With (respec-

tively, ), the probability that is a connected
graph approaches 1 (respectively, 0) as grows large. For the
one-law, this is done by establishing a computable lower bound
on the probability of connectivity for each . In particular,
we see that with and , the graph is connected
with probability larger than 0.98, whereas with only 50 sen-
sors, the probability of connectivity becomes larger than 0.999.
Thus, connectivity is achievable with high probability under
very small values of and . In fact these values are much
smaller than the ones predicted by a heuristic transfer of con-
nectivity results from Erdős–Rényi (ER) graphs (as was done
in the original paper of Chan et al. [3] and in [8]). The results
obtained here help correct misleading predictions made in these
earlier papers and form the basis for a reappraisal of the scala-
bility of the random pairwise predistribution scheme; see [22]
and [23] for details.
The random graph is known in the literature on

random graphs as the random -out graph [1], [6], [9]: To each
of the vertices, assign exactly arcs to distinct vertices
that are selected uniformly at random, and then ignore the ori-
entation of the arcs. Fenner and Frieze have established [6, Th.
2.1, p. 348] the zero-one law given here by a completely dif-
ferent approach which focuses on vertex and edge connectivity
parameters. While their analysis also leads to a lower bound on
the probability of connectivity, the lower bound obtained here
is sharper for .
This paper is organized as follows: In Section II, we give a

formal construction of the random pairwise key predistribution
scheme and introduce the induced random -out graph. The
main results of this paper concerning the connectivity of random

0018-9448 © 2013 IEEE



YAĞAN AND MAKOWSKI: ON THE CONNECTIVITY OF SENSOR NETWORKS UNDER RANDOM PAIRWISE KEY PREDISTRIBUTION 5755

-out graphs are presented in Section III; there, we also com-
pare them against the earlier results of Fenner and Frieze. Var-
ious comments are given in Section IV, and proofs are given in
Sections V and VI.

II. MODEL

All statements involving limits, including asymptotic equiv-
alences, are understood with going to infinity. The cardinality
of any discrete set is denoted by . The random variables
(rvs) under consideration are all defined on the same probability
triple . Probabilistic statements are made with respect
to this probability measure , and we denote the corresponding
expectation operator by .

A. Random Pairwise Key Predistribution Scheme

The random pairwise key predistribution scheme of Chan et
al. is parametrized by two positive integers and such that

. There are nodes which are labeled with
unique ids . Write and set

for each . With node , we associate a
subset of nodes selected at random from . Each of
the nodes in is said to be paired to node . Specifically,
for any subset , we require

if

otherwise.

(1)

Thus, the selection of is done uniformly among
all subsets of which are of size exactly . The rvs

are assumed to be mutually indepen-
dent so that

for arbitrary subsets of ,
respectively.
Once this offline random pairing has been created, we con-

struct the key rings , one for each node,
as follows: Assumed available is a collection of distinct
cryptographic keys . These
keys are drawn from a very large pool of keys; in practice the
pool size is assumed to be much larger than and can be
safely taken to be infinite for the purpose of our discussion.
Now, fix and let

denote a labeling of . For each node in paired
to , the cryptographic key is associated with . For
instance, if the random set is realized as
with , then an obvious labeling consists
in for each so that key is
associated with node . Of course other labeling are possible,
e.g., according to decreasing labels or according to a random
permutation. Finally, the pairwise key

is constructed and inserted in the memory modules of both
nodes and . Inherent to this construction is the fact that the
key is assigned exclusively to the pair of nodes and ,

hence the terminology pairwise predistribution scheme. The
key ring of node is the set

(2)

As mentioned earlier, under full visibility, two nodes, say
and , can establish a secure link if at least one of the events

or is taking place. Note that both
events can take place, in which case the memory modules of
nodes and both contain the distinct keys and . By
construction, this scheme supports node-to-node authentication.

B. Induced Random Graphs

Under full visibility, the pairwise predistribution scheme nat-
urally gives rise to the following class of random graphs: With

and positive integer , we say that the dis-
tinct nodes and are adjacent, written , if and only if they
have at least one key in common in their key rings, namely

or, equivalently

(3)

Let denote the undirected random graph on the vertex
set induced by the adjacency notion (3). In the liter-
ature on random graphs, the random graph is usually
referred to as a random -out graph [1], [6].
We close with some notation. Throughout, we write

Let denote the probability of edge assignment (between
any two nodes) in . Under the enforced independence
assumptions, it is plain from (3) that

(4)

III. RESULTS

Throughout, it will be convenient to use the notation

and

(5)

with and arbitrary positive integers.

A. Tight Bound and Its Consequences

Our main technical result, given next, is established in
Section V; its proof adapts classical arguments used for proving
the one-law for connectivity in ER graphs [4, Sec. 3.4.2, p. 42].
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Theorem 3.1: For any positive integer , the bound

(6)

holds for all with .
The bound (6) gives some indication as to how fast the con-

vergence occurs when , with
the convergence becoming faster with larger as would be ex-
pected; see also (8) below.
For , since , the bound (6) becomes

(7)

For each , a simple coupling argument yields the
comparison

(8)

Making use of (7), we then conclude

(9)

A zero-one law for connectivity is presented next.
Theorem 3.2: With any positive integer , it holds that

if

if .
(10)

The one-law in Theorem 3.2 is an easy consequence of the
bound (6), while the zero-law of Theorem 3.2 is proved sepa-
rately in Section VI. Theorem 3.2 easily yields the behavior of
graph connectivity as the parameter is scaled with , but first
some terminology: We refer to any mapping as
a scaling provided it satisfies the natural conditions

(11)

Corollary 3.3: For any scaling , we have

(12)

provided for all sufficiently large.
Proof: Under the scaling , it follows from

(8) that for all sufficiently large as soon
as . Letting go to infinity in this last inequality, we get
(12) by invoking Theorem 3.2 (with ), or equivalently
(7).

B. Earlier Results of Fenner and Frieze

Related results have appeared earlier: Fix and
consider a positive integer . We define the vertex con-
nectivity of as the minimum number of its
vertices whose deletion disconnects . The edge connec-
tivity is defined similarly in terms of edges. Fenner
and Frieze have established the following result in terms of these
quantities [6, Th. 2.1, p. 348].
Theorem 3.4: For any positive integer , we have

(13)

and
(14)

while
(15)

The one-law in Theorem 3.2 is immediate from either (13)
or (14) since is connected if either (re-
spectively, ). However, as we shall show below,
the arguments used here lead to computable lower bounds on

which are stronger (except for the case ) than
the bounds that can be inferred from the proof of Theorem 3.4
[6, Th. 2.1, p. 348].
The zero-law in Theorem 3.2 coincides with (15). However,

(15) was obtained [6] by completely different arguments based
on results by Katz [11] concerning random mappings. Our
proof, given in Section VI, uses instead classical enumeration
results for the set of undirected graphs on nodes which are
connected and have exactly edges [7, pp. 133–134].
We now compare the lower bound (on the probability of con-

nectivity in ) obtained in Theorem 3.1 with the one (im-
plicitly) given in the proof of Theorem 3.4 [6, Th. 2.1, p. 348].
Inspection of the proof given there [6, p. 348] yields the bound

(16)

for any positive integers and such that , where we
have set

with

This follows from [6, p. 349, eqn. (2.2)] with ; note that
the parameter used here is denoted in [6].
The lower bound (16) has the same form as the one given in

Theorem 3.1, but is weaker (i.e., is a smaller lower bound) than
(6) except for . Indeed, it is easy to check that

with monotonically from above.
In order to better understand how these lower bounds com-

pare with each other, observe that

with

Thus, the lower bound given in Theorem 3.1 for the probability
of network connectivity approaches one much faster than the
bound (16) inferred from [6].
To illustrate this fact, with , we have plotted the be-

havior of , and as a function of in Fig. 1.
As expected from the remarks above, approaches zero
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Fig. 1. For , we compare the coefficients , and . It
is clear that for all , so that the lower
bound obtained here is stronger (i.e., larger) than the lower
bound derived in [6].

much faster (in fact, exponentially fast) than as in-
creases. This confirms that the upper bound given in Theorem
3.1 for the probability of connectivity is much sharper than the
bound available in [6]. Although is already enough to
ensure connectivity with high probability, in a realistic WSN
setting, we expect to take larger values in order to accom-
modate other network requirements and to ensure connectivity
under severe channel conditions [21].

C. Simulation Study

We now explore the main result of the paper via computer
simulations. First, for three typical network sizes, i.e., for
, , and , we look at the probability that

is connected as the parameter varies from
to . For each pair of values, we generate in-
dependent samples of the graph and count the number
of times (out of a possible ) that the obtained graph is con-
nected. Dividing this count by , we obtain the (empirical)
probability that is connected. The results, depicted in
Fig. 2, readily confirm Theorem 3.1 and the bound (9). In fact,
with , we have observed only two (out of a possible
) instances where the generated graph was disconnected; for

, all instantiations of were connected. In the
inset of Fig. 2, we focus on the case and plot the varia-
tions of with respect to network size . Here, each es-
timate is constructed on the basis of 2000 independent samples.
We see that approaches zero as gets large, confirming
the zero-law in Theorem 3.2.

IV. COMMENTS

Before giving proofs in Sections V and VI, we pause for some
comments concerning the results.

A. Correlated Edge Assignments

For each in and , let denote the
Erdős–Rényi graph on the vertex set with edge prob-
ability . While edge assignments are mutually independent in

, they are strongly correlated in , namely neg-
atively associated in the sense of Joag-Dev and Proschan [10];

Fig. 2. Empirical probability versus for , and
. (Inset) The empirical probability versus .

details are available in [18] and [21]. Thus, cannot be
equated with even when the parameters and are
selected so that the edge assignment probabilities in these two
graphs coincide, say . As a result, neither Theorem
3.1 nor Corollary 3.3 are consequences of classical results for
ER graphs [1]. See also the discussion in Section IV-C.

B. Connectivity Versus Absence of Isolated Nodes

To drive the point further, note the following: In many known
classes of random graphs, the absence of isolated nodes and
graph connectivity are asymptotically equivalent properties,
e.g., ER graphs [1], [4], geometric random graphs [13], and
random key graphs [14], [19], [20]. This equivalence, when it
holds, is used to advantage by first establishing the zero-one
law for the absence of isolated nodes, a step which is usually
much simpler to complete with the help of the method of first
and second moments [9, p. 55]. However, there are no isolated
nodes in since each node is of degree at least . Thus,
the class of random graphs studied here provides an example
where graph connectivity and the absence of isolated nodes are
not asymptotically equivalent properties; in fact, this is what
makes the proof of the zero-law more intricate.

C. Earlier Analysis via Transfers

In the original paper of Chan et al. [3] (as in [8]), the con-
nectivity of was analyzed through the following two-
step process: 1) First, the random graph was equated
with an ER graph so that the edge assignment probabilities are
asymptotically equivalent; 2) Next, well-known connectivity re-
sults for ER graphs were formally transferred to under
this constraint. We now revisit this transfer argument in some
details.
Recall that in ER graphs, the property of graph connectivity

exhibits the following zero-one law [1]: There is no loss of gen-
erality in writing any scaling for the edge as-
signment probability in the form

(17)
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for some deviation sequence . We then have the
zero-one law

if

if .
(18)

It is tempting to take advantage of this zero-one law as fol-
lows: A given scaling is said to be asymptotically
matched to a scaling for ER graphs provided

. This requirement ensures that the expected de-
grees (per node) in the random graphs and
are asymptotically equivalent. In view of (4), this amounts to

(19)

If the scaling is put in the form (17) for some
deviation sequence , then (19) becomes

(20)

With this identification, one might possibly expect that the
random graphs and behave in tandem, at
least asymptotically, so that by analogy, the following zero-one
law

if

if
(21)

should hold owing to (18). This approach, though appealing for
its simplicity, leads to incorrect conclusions as we now show.
Indeed, if the scaling is such that

for some positive integer for all sufficiently large, then on
that range, (20) gives the corresponding deviation function as

for some sequence with .
Note that regardless of the value
of , and according to (21), we would conclude that

for all positive integers , in clear
contradiction with Theorem 3.2.
We could also have used a weaker version of the zero-one law

(18) which considers scalings of the form

(22)

for some . It easily follows from (18) that

if

if .
(23)

This time, (19) requires

(24)

under (22), and a formal transfer of (23) suggests the validity of

if

if .
(25)

In particular, from (24) and (25), we read off that should
behave like with (respectively, ) in order
for to be connected (respectively, disconnected) with
a probability approaching 1 for large. Not only does this con-
clusion fall short from the result given in Corollary 3.3, but it
also leads to incorrect design decisions: For instance, the max-
imum supportable network size evaluated in [3] and [8] leads
to the conclusion that the random pairwise key predistribution
scheme is not scalable in the context ofWSNs. The results given
here form the basis for a reevaluation of these conclusions; see
[22] and [23] for details.

D. Numerical Comparisons

We close with a numerical example that illustrates the differ-
ence between the random -out graph and its matched
ER graph . For that purpose, we take and ,
and select so that the matching condi-
tion (19) is satisfied exactly. For this setting, we show instan-
tiations of the random -out [see Fig. 3(a)] and of the corre-
sponding ER graph [see Fig. 3(b)]. The random -out graph is
seen to be connected, while the ER graph is not as it has two
isolated nodes (shown by a star symbol). In fact, out of 1000
independent realizations of the two graphs (with the same pa-
rameters), we observed that the random -out graph is always
connected, while the ER graph is connected only 28% of the
time (even with 75 nodes). Thus, the difference in connectivity
between the two graphs is present not only in the asymptotic
regime, further highlighting the usefulness of Theorem 3.1 for
tuning the parameters of the pairwise scheme.

V. PROOF OF THEOREM 3.1

Fix and consider a positive integer . The
conditions

(26)

are assumed enforced throughout; the second condition auto-
matically implies .

A. Basic Bound

For any nonempty subset of nodes, i.e., , we say
that is isolated in if there are no edges (in )
between the nodes in and the nodes in the complement

. This is characterized by the event given by
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Fig. 3. Instantiation of the random -out graph (a) and of the matched ER graph (b). Both graphs are defined for nodes with
and so that the matching condition (19) is satisfied exactly. While the random -out graph is connected, the ER graph is not connected
with two isolated nodes (each indicated by a star symbol).

The discussion starts with the following basic observations:
If the realization of is not connected, then there
must exist a nonempty subset of nodes which is isolated in

. Since each node in is connected to at least
other nodes, such an isolated set in must necessarily
contain at least elements, i.e., . Thus, with

denoting the event that is connected, we have
the inclusion

(27)

where stands for the collection of all nonempty subsets of
. A moment of reflection should convince the reader that this

union need only be taken over all subsets of with
, a nonvacuous condition under (26). A standard

union bound argument immediately gives

(28)

where denotes the collection of all subsets of with ex-
actly elements.
For each , we simplify the notation by writing

. Under the enforced assump-
tions, exchangeability implies

and the expression

(29)

follows since . Substituting into (28), we obtain
the bounds

(30)

For each , it is easy to check that

(31)

To see why this last relation holds, recall that for nodes
to be isolated in , we need that 1) none of

the sets contains an element from the set
; and 2) none of the sets

contains an element from . More precisely, we must
have

and

The validity of (31) is now immediate from (1) and the mutual
independence of the rvs .
Substituting (31) into (30) readily yields

(32)

B. Simplifying (32)

Next we seek a computable upper bound to the right handside
of (32). For , we note that

since decreases as increases from to .
Using this fact in (32) together with the standard bound
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we conclude that

(33)

On the range , we note that

so that

where the last inequality used the fact that . Using this
bound into (33), we find

(34)

with given by (5).

C. Bounding the Sum in (34)

Under the constraint (26), we necessarily have ,
and the sum in (34) is, therefore, not empty. To bound it further,
we proceed as follows: Write

(35)

with

It is easy to see that is monotone decreasing on the
range and monotone increasing on the range

; hence

(36)

While by virtue of (26), we now show that

(37)

for all large enough, say for some finite integer
which depends on . Indeed, (37) is equivalent to

a condition which we rewrite as

The mapping is monotone increasing on the interval
. Therefore, since , the inequality (37) will

hold as soon as

(38)

whenever satisfies the constraint

A straightforward analysis shows that this occurs for all
, a range automatically guaranteed under (26). Condition (38)
simplifies to read

(39)

It is easy to check that (39) holds as an equality for
and as a strict inequality for all . The choice

is, therefore, acceptable for (38) (hence (37))
to hold.
Using (35)–(37), we get

for all so that

Using this fact in (34), we readily obtain the conclusion (6) since
.

VI. PROOF OF THE ZERO-LAW IN THEOREM 3.2

Fix . When , the random sets
are now singletons, and can be in-

terpreted as -valued rvs (as we do from now
on) such that for each . Thus, the rv
denotes the node randomly associated (paired) with node ; it
is distributed according to

(40)

A formation (on ) is any sequence such
that for each , the component is an element of
with . In other words, is one of the possible
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realizations of the rv vector . If denotes the
collection of all formations on , then

since the rvs are i.i.d. rvs, each distributed ac-
cording to (40).
With each formation in , we associate two graphs on

the vertex set : We first define a directed graph on
these vertices by creating a directed edge from node to node
whenever ; let denote this directed graph. Next,
we introduce the undirected graph naturally induced by

—Just turn all directed edges into undirected ones. It
is plain that realizes the random graph when

.
In what follows, we use the conventional notion of connec-

tivity for directed graphs [1]: A directed graph is connected if
and only if the underlying undirected graph is connected—This
is to be distinguished from the notion of strong connectivity de-
fined for directed graphs. With this in mind, it follows from the
discussion so far that

(41)

where counts the number of formations in whose di-
rected graphs are connected, namely

(42)

The proof now proceeds by obtaining the asymptotic be-
havior of for large . This will be done with the help of the
following easily validated facts:
1) By definition, is connected if and only if is
connected.

2) The undirected graph can have at most edges
since has exactly directed edges (as each of the
nodes has out-degree 1).

3) If is connected, then basic principles force
to have at least edges.

It follows that there are two distinct types of formations which
yield (undirected) connected graphs:
A) If is connected with edges, then is

necessarily a tree, and has exactly one bidirec-
tional edge.

B) If is connected with edges (and so cannot be
a tree), then the graph is also connected, has no
bidirectional edge and must contain exactly one directed
cycle. This can easily be validated upon noting that each
node in has out-degree 1; see Fig. 4.

This dichotomy leads to decomposing as

(43)

Fig. 4. Case B is illustrated with nodes. On the left, we show an ex-
ample where is connected and has 5 edges. On the right, we show the
corresponding possibilities for the directed graph . Since needs
to have five edges with each node having out-degree 1, there are only two such
possibilities, one for the clockwise (I) and one for the counter clockwise (II)
orientation of the cycle.

with the counts and given by

and

respectively. We take each count in turn.

Case A

The count tallies all formations in such that
is a tree with edges. With denoting the collection of
labeled trees on the set of vertices , we recall that

by Cayley’s formula [12]. Any such labeled tree
can be the underlying undirected graph for different forma-
tions (each corresponding to one of the possible locations
for the single bidirectional edge). Therefore, we have

so that

(44)

Case B

Recall that counts all formations in such that
is connected with edges and thus has exactly one undirected
cycle. For each such formation, the corresponding directed
graph has exactly one directed cycle, and cannot have
any bidirectional edge (since the number of edges in
and are both ). It is plain that a connected graph
with edges can be the underlying undirected graph of two
different formations (each corresponding to one of the two
possible orientations of the directed cycle); see Fig. 4 for an
illustration of this fact.
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Now let denote the set of undirected graphs on nodes
which are connected and have exactly edges. We find

whence

However, it is known [7, pp. 133–134] that

so that

(45)

Letting go to infinity in (41), we readily get
as we make use of (43)–(45).
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